Molecular PL Photoluminescence Spectroscopy in Nanotubes (CNTs and CNTs) Based on Nano-Microelectronics Ph.D.

Researcher  and author: PhD student   Afshin Rashid



Note: In photoluminescence spectroscopy in nanotubes (CNTs and CNTs) external factors affecting the fluorescence intensity are growth defects, length of nanotubes, molecules present in the environment, physical or chemical degradation, and chemical functionalization. The interaction between the guest molecules in covalent and non-covalent ways with the host nanotubes can lead to intensification or deactivation of PL intensities. 

PL spectroscopy provides good information  about CNT semiconductor nanotubes and CNTs in the sample  This can be used to  arrange the sample according to the structure or to measure the  selective production of a species from the resulting sample in a  rapid manner. Of course, there are many external factors  that reduce the accuracy of the data obtained,  and further calculations and accurate calibration  will increase the accuracy of the work.

CNT and CNTS electrical conductivity measurements

Metal and semiconductor SWCNTs have different electrical properties  that are reflected in their conductivity measurements  In theory, metal nanotubes  can pass an electrical current density of  4 109 109 which is 1000 times more  Acm-2  than metals such as copper, whereas  metal unlike semiconductor SWCNTs have DOS electrons at the  surface and surface. Fermi is the chemical potential of  electrons. At zero, this  surface contains electrons, but in the semiconductor the  electrons fall into the energy gap, where  there are no permissible energy levels. Therefore, electrons exist to stabilize the transport complex formed by increasing the  reactivity to the  surface of the nanotube.


 Metal  swcnts are better able to stabilize the transducer and  because of this the reaction speed is increased. Selective removal of semiconductor SWCNTs is related  to the doping of the cavity with hydrogen peroxide. If the surfactant is used,  the hydrogen peroxide breakdown reaction  is enhanced by diameter because the SWCNTs in which the surfactant is inserted  react more strongly than the others. The oxidation of nanotubes with air can be compared with the  oxidation of nanotubes with hydrogen peroxide  Under air oxidation conditions  , SWCNTs react with a higher chiral angle and  a lower diameter faster. Therefore  SWCNTs with low chiral angle and diameter can be used Separated many by burning in the air with the help of light  .


 Similarly solution solubilization  indicates that the reaction rate is diameter dependent  because the reaction is pyramidal or  nonlinear on the orbital π, which  is a diameter dependent process. While  exposed to light in the air, metal SWCNTs in  the thin layer of carbon nanotubes can be selectively degraded in the presence of  a semiconductor type. Nitronium ions have been reported to  selectively attack low-diameter metal SWCNTs  and convert them to amorphous carbon  Double sulfonic acid mixtures are  also used to dissolve SWCNTs by  direct protonation. From  there, the protonated to geometry chain  is sensitive, this technique permits the selectivity  based on the diameter. 



Conclusion : 

Reaction with hydrogen gas and fluorine, by introducing  SP3, converts the electrical structure of  metallic nanotube hybridization  into a semiconductor. These reactions sometimes damage the  walls of the nanotubes, resulting in the  formation of amorphous carbon or graphite layer structures  The hydrogenation of single-walled nanotubes enhances the semiconductor nature of  SWCNTs at normal temperatures  High plasma or high temperature reaction  etching into the wall of metal nanotubes  .

Author: Engineer Afshin Rashid 

PhD student of Nano-Microelectronics at Islamic Azad University, Science and Research Branch, Tehran