Isolation of SWCNTs by Covalent Methods and Wall Functionalization (Nanoscience Ph.D

Researcher  and author: PhD student   Afshin Rashid)





Note: Isolation of SWCNTs by covalent methods of  functionalizing the wall of carbon nanotubes is a cylindrical structure of SP2. And the carbon atoms hybridization associated with the inactivity  of the carbon nanotube precisely  adapts to the orbital π curvature. 

The higher activity of carbon nanotubes with smaller diameters than enhancement reactions could be due to the increase in space pressure. In addition, electrophilic enhancement selectivity reactions on SWCNTs are much easier for metal nanotubes  because their HOMO levels  are higher. Selectivity in wall functionalization reactions  , based on DOS, can be understood to play an important role in the functionalization of the wall of carbon nanotubes.  Metal nanotubes, unlike semiconductor SWCNTs,  have DOS electrons at  the Fermi surface and the Fermi surface has the chemical potential of the  electrons. At zero, this  surface contains electrons, but in the semiconductor the  electrons fall into the energy gap, where  there are no permissible energy levels. Therefore, electrons exist to stabilize the charge transfer complex  formed by increasing the reactant to  the nanotube surface. Metal SWCNTs are  better able to withstand the modifier and therefore  the reaction rate is increased. This  may be due to the activity of metal SWCNTs  in electrophilic augmentation reactions  such as increased dichlorocarbon and reactive carbon  (iodinated azonium) and increased hydrosilytation  As for the reactions of SWCNTs with diazonium ions  or salts, so far, for the  first time, water-soluble aryl diazonium reactants  selectively exhibit good activity with metal SWCNTs  .


Diazonium salts  form metal semiconductor SWCNTs by forming aryl covalent bonds  on nanotube  After  heat treatment of nanotubes with azonium groups,  metal nanotubes are recovered and the aryl groups  are separated from the nanotube walls. The presence of diazonium functional  group inactivates  metal nanotubes in electrical equipment  because the diazonium covalent functionalization significantly disturbs  the optical and electrical properties of  metal SWCNTs. To optimize this reaction, more benzene salt  research is being  carried out. 



Conclusion: 

Selective covalent functionalization of semiconductor SWCNTs walls  due to the dipole reaction of  cyclic enhancement of azomethineylides  derived from triacyl-N-oxides with  polycyclic aromatics increases the  amount of metal nanotubes in bottom sediment  Theoretical studies show that  dipole ring enhancement is sensitive to the diameter and  chirality of nanotubes.

Author: Engineer Afshin Rashid 

PhD student of Nano-Microelectronics at Islamic Azad University, Science and Research Branch, Tehran