مطالب تخصصی و فوق تخصصی (برق _الکترونیک) و (دکترای نانو _ میکرو الکترونیک)

توضیحی کامل درباره مباحث تخصصی و فوق تخصصی برق_الکترونیک و دکترای نانو _ میکرو الکترونیک

How to build and install NEMS and MEMS systems based on nano-microelectronics (Ph.D.)

How to build and install NEMS and MEMS systems based on nano-microelectronics (Ph.D.)


Author and Researcher:  Afshin Rashid





Note: MEMS are integrated into moving micro-structures (with electromechanical components), sensors, actuators, radiation and microelectronic devices. These MEMSs can be manufactured for use in various microstructural technologies such as micromachines. 

Essential technology in the fabrication of MEMS, CMOS  and biCOMS (for manufacturing ICs) and  micromachines (for the generation of motion, radiation and  energy radiation to micron scale devices and structures  ). One of the main goals is to integrate microelectronics with micro electromechanical mechanical devices and structures  to produce highly efficient , integrated  MEMSs To ensure high performance, workability, reliability and buildability, CMOS-based bulk manufacturing processes  are well developed and must be  refined and enhanced.


Micro-machining of Bulk body in MEMS components

Micromachining of the surface and trunk (BULK), in addition to  high-aspect ratio (LIGA-like and LIGA) techniques (high-aspect ratio) are the most developed methods of construction. Silicon  is the primary layer material used in the microelectronics industry   A number of crystal molds (  300mm diameter solid and 100mm long solid) are  crystallized from very high purity silicon and cut to the desired thickness and then  polished by mechanical and chemical polishing technologies  Properties of electromagnetic and  mechanical impurities to the crystallization direction and  predicted impurities. Depending on  the silicon layer, CMOS and biCMOS processes They are used to manufacture ICs, and micromachining of the surface and trunk (BULK), (plus  high-aspect ratio (LIGA-like and LIGA) or high-aspect ratio  techniques) are the most developed manufacturing methods. Silicon  is the primary layer material used in microelectronics. A number of crystal molds (  300mm diameter solid and 100mm long solid) are crystallized from  silicon of very high purity and cut to the desired thickness and then  polished by mechanical and chemical polishing  technologies. Properties of electromagnetic and  mechanical impurities to the crystallization direction and  predicted impurities. Depending on the zeros Layer silicon CMOS processes and biCMOS  for IC manufacturing processes are used and category  listed, such as: Fountains n) well-n, (spring p (well-p (or springs combined (well- twin. (The main steps  are: : Diffusion, oxidation , Polysilicon valve arrangement , Optical photolithography, Masking gate formations  , Etching, Metal metallization, Wire bonding  , (Etc.) We outline the major processes and steps involved in  building MEMS.


Processes  classified as:    

N well-n fountain  (well-p) (or well-twin fountain)  The main steps are: diffusion, (oxidation)

(oxidation, (polysilicon valve arrangement),  (optical engraving photolithographology), gate formations

Masking, etching, metal metallization, wire  bonding, etc. We outline the major processes and steps  involved in MEMS construction.

 Step 1: Crystallize  Silicon Dioxide: 

Silicon dioxide is  thermally crystallized on a silicon base . For example, crystallization can be performed in  a steam-filled space at 1000  ° C for one hour. Silicone surfaces  with a layer of diameter 5 / 0 to 1 micron crystal  silicon oxide covered (the thickness of the  oxide heat thus spreading water vapor in the  silicon oxide to a few microns is limited.) silicon dioxide without changing the surface  layer deposition, but the process is so slow is  a thin membrane pressure is minimized. nitride,  silicon may also be deposited and the thickness  Is limited to 4 to 5 micrometers 


Helle 2: (Resistance)

(photoresist): A light-resistant material (light-sensitive material) used in silicon dioxide coating. This action can be accomplished by rotating the suspended light resistor  in a solvent. The result of rotating and  removing the solvent is an optical resistor with a thickness of 0.2  to 2 microns. The optical resistance of the seals to  remove the solvents from the inside is completely baking and soft  .


Stage 3 (subject to optical engraving and its development  : (Photolithography Exposure, and Development)

Optical Resistance Like an optical engraving mask (  optical mask), it is exposed to UV light. This optical mask blocks the path of light and defines a pattern  to ensure optimal surface mapping Optical masks are usually made using melted silica  and light transparency that is subject to effective wavelength, width and thermal expansion On a glass surface or (quartz)  a layer of opacity is passed as a sample. Usually chrome layer with hundreds of angstroms thick). An  optical mask is manufactured based on the shape of the required poly- silicon shell  Pregnancy mapping  is determined by mask. The optical resistor is then  separated. In a positive light-positive light, Molecular weight reduces optical resistance and  eliminates optical resistance by selectively lowering molecular weight materials  

Step 4 (etch ( silicon dioxide): silicon dioxide pen )

Silicone dioxide is pen Residual light resistance is used as a  hard mask that protects the silicon dioxide coating. Light resistance is eliminated by etching wet ( hydrofluoric acid , sulfuric acid and  hydrogen peroxide) or etching dry (  by oxygen plasma). The result is  a thin film of silicon dioxide on the silicon base 


Step 5 (polysilicon  Deposit):

(Screen thin polysilicon, the dioxide  silicon deposited there. For example, polysilicon  can be in LPCVD at 600 °  C in a confined space silane (SiH4) deposited  there. Sedimentation rate in normal conditions 65 to  80 Å Precision (Almin, which minimizes internal pressure  and prevents bending and folding . (Thin polysilicon film should be non- pressurized or have a tensile internal pressure). Thin film thickness exceeds (4) ) Is micron.


Conclusion on the method of fabrication and reproduction of MEMS system

Thanks to the work done in the field of NEMS, MEMS,  today the industry is moving more towards micro and nanoscience. Therefore, research in this  field seems to be essential, leading to access  to advanced science and technology. Including  future work in this area must be made  optimum design of MEMS and achieve the kind of reform  it is to work in other sciences.

Author:  Afshin Rashid 




الکترونیک تخصصی

میکرو _ نانو الکترونیک

میکرو الکترونیک

نانو

نانو الکترونیک

نانو تکنولوژی الکترونیک

نانو حسگرها

نانو ربات

نانو مخابرات

نانو میکرو الکترونیک