Distribution of nanotubes with NIR-vis-UV absorption spectroscopy (nano-microelectronics)

Researcher  and author: Dr.   (   Afshin Rashid)


Note: The distribution of nanotubes by absorption spectroscopy of two adjacent nanotubes with the interaction of carbon with van der Waals bond energy  can cause the formation of parallel clusters or strands  . Creating a handle in the electronic structure of the  tubes causes turbulence and causes the red shift  of their absorption peaks, which  causes the peaks to overlap and  fade, and ultimately obscures the  structure of the spectrum. 

In addition, the  presence of clusters prevents the selective reaction of  internal nanotubes, which confuses the purification of  nanotubes by size or type or their use  as macromolecular species  Therefore, NIR-Vis-UV absorption spectroscopy  can be used to examine the sample population  or the degree of grouping of the sample. If the distribution of nanotubes by NIR-vis-UV absorption spectroscopy  is desired, the sample  should be dispersed or in a thin layer  Optical absorption assays provide useful information  about the electronic properties of SWCNTs and  can be used to study  covalent and non-covalent interactions between  molecules and nanotubes. 



When the functional  groups are covalently placed on the  nanotube, the absorption peaks are  quite attenuated or even  disappear because the structure of the nanotube in some  hexagonal SP2s changes to the structure of the  parts of the SP3 structure  NIR-VIS-UV absorption spectroscopy has  two important uses: the rate of covalent reactions  and the selectivity of different nanotubes  Non-covalent doping or molecular adsorption  produces valence-like electrons (dopingP ) or saturation of the conduction band  (doping-n). These non-covalent interactions  can affect the intensity of absorption peaks  When doping, electron  donors such as (Cs, K) or electron acceptors They make very similar changes in the (-Br2 spectrum,  such as  NIR-vis-UV, both of which  attenuate electron transitions. Use absorption spectroscopy to estimate the abundance  of metallic and semiconductor species by comparing the  peaks intensity; Because the position of these resonant peaks depends on  chirality and diameter. For qualitative analysis  , absorption spectroscopy is excellent because  it shows the overall appearance of the sample composition; But quantitative evaluation depends on (m, n) for several possible reasons for the  uptake of nanotubes  It is reported that the ratio of extinction coefficients  for metal to semiconductor  SWCNTs is 0.352, which should be independent of the separation method  - 0.009 or starting material. But the values The extinction coefficients of SWCNTs reported in  scientific sources are not consistent and better measurement methods are still needed  to determine the extinction coefficient of different  nanotubes (m, n). Second, the  strong absorption of π in the short wavelength region makes the  resonance transmissions not distinct. 



Conclusion : 

Some samples have large impurities,  such as graphite polyhedral particles, amorphous carbon, and  catalyst particles. The light absorption of these impurities is related to the spectrum  and it is necessary to quantitatively evaluate the elimination of the  field  absorption field, which in this case  is not possible and a little analysis will be associated with error  The third problem is due to the presence of  dispersant that is dispersed when the nanotube is dispersed, the  presence of  which leads to misdiagnosis in quantitative detection of  SWCNT in the state.



In addition, the complexity of courier overlap  is problematic. As a result, the presence of a large number of SWCNTs with different  (m, n) with unknown frequency along with  various errors along with data analysis, makes  it difficult to quantify the concentration of specific species  (m, n) in the sample and only estimated data  to Is achieved.

Researcher  and author: Dr.   (   Afshin Rashid)

PhD in Nano-Microelectronics