Distribution of nanotubes by NIR-vis-UV absorption spectroscopy based on nano-microelectronics Ph.D.

Researcher and author: PhD student   Afshin Rashid

Note: Distribution of nanotubes by absorption spectroscopy of two adjacent nanotubes by interaction of carbon with van der Waals bond energy  can form batches or parallel strands  . Creating clusters in the electronic structure of the  tubes causes perturbations and  redshifts of their absorption peaks,  causing the peaks to overlap and  fade, eventually confusing  the spectrum structure.

In addition, the  presence of layers prevents the selective reaction of  internal nanotubes, which confuses the purification of  nanotubes by their size or type or their use  as macromolecular species  Therefore NIR-Vis-UV absorption spectroscopy  can be used to examine sample population  or sample size. If the distribution of the nanotubes by NIR-vis-UV absorption spectroscopy  is desired, the sample  must be dispersed or in a thin layer  Optical absorption measurements provide useful information on  the electronic properties of SWCNTs and  can be used to study  covalent and non-covalent interactions between  molecules and nanotubes. 


When the functional  groups are covalently bound to the  nanotube, the absorption peaks are  either markedly weakened or even  disappear because the structure of the nanotube in some  hexagonal SP2 changes to the structure of  parts of the structure of  SP3. NIR-VIS-UV absorption spectroscopy has  two important uses: covalent reaction rates  and selectivity for different nanotubes  Non-covalent doping or molecular absorption  results in the production of valence-like electrons (dopingP ) or doping-n saturation  These non-covalent interactions  can affect the intensity of the absorption peaks  When doping, electrons  such as (Cs, K) or acceptors They produce very similar changes in the spectrum  (-Br2 ) such as  NIR-vis-UV and both  weaken the electron transfer. Absorption spectroscopy is used to estimate the abundance  of metallic and semiconductor species by comparing the  intensities of the corresponding peaks  because the position of these resonant peaks depends on  chirality and diameter. For qualitative analysis  , absorption spectroscopy is excellent because  it shows the general character of the sample composition,  but quantitative evaluation depends on (m, n)  for several possible reasons  It is reported that the extinction coefficient ratio  for metal-to-semiconductor SWCNTs is  + 0.352, which should be independent of the  - 0/009 separation or starting materials method. But the values The reported extinction coefficients of SWCNTs are  not consistent with the scientific literature, and better quantification methods are still needed  to determine the extinction coefficient of different  nanotubes (m, n). Second,  strong absorption in the short wavelength region makes the  resonant transitions not distinct. 


Conclusion : 

Some samples have high impurities,  such as graphitic polyhedral particles, amorphous carbon, and  catalyst particles. The optical absorption of these impurities is related to the spectrum  and is necessary for quantitative evaluation of the field removal of the  field  absorption, which would not be possible in this case  and the quantitative analysis would be error-free  The third problem is due to the presence of  dispersant, which is dispersed when the nanotube is dispersed  ,  leading to misleading quantitative detection of  SWCNT in the state.



In addition, the complexity of overlapping  peaks is problematic. As a result, the existence of a large number of SWCNTs with different  (m, n) of unknown abundance along with  various errors associated with information analysis makes  it difficult to quantify the specific species concentration  (m, n) in the sample and only estimate data  . it will be obtained.

Author: Engineer Afshin Rashid 

PhD student of Nano-Microelectronics at Islamic Azad University, Science and Research Branch, Tehran