بایاس معکوس ( Reverse Bias ) در دیود diode (نحوه عملکرد وکاربرد ها) مهندسی برق _الکترونیک

پژوهشگر و نویسنده:  دکتر افشین رشید)

نکته: دیودها از نیمه هادی های نوع N و P ساخته می شوند . اگر قطب مثبت منبع تغذیه را به کریستال نوع N و قطب منفی آن را به کریستال نوع P متصل کنیم. دیود در حالت بایاس معکوس ( Reverse Bias ) قرار میگیرد.

در این حالت الکترونهایی از قطب منفی منبع تغذیه وارد نیمه هادی نوع P می شوند و با حفره های مجاور ناحیه تخلیه ترکیب می شوند و به این ترتیب سبب افزایش عرض ناحیه تخلیه در نیمه هادی نوع P می شوند . همچنین در نیمه هادی نوع N ، الکترونهای اطراف ناحیه تخلیه جذب قطب مثبت منبع تغذیه می شوند و آن نواحی از الکترون تهی می شود و به این ترتیب در نیمه هادی نوع N نیز عرض ناحیه تخلیه افزایش می یابد . با افزایش ناحیه تخلیه ، پتانسیل سد نیز افزایش می یابد و این افزایش پتانسیل سد آنقدر ادامه می یابد تا پتانسیل سد با ولتاژ منبع تغذیه برابر شود و پس از آن عرض ناحیه تخلیه ثابت خواهد ماند . 

علت این امر این است که زمانی که پتانسیل سد با ولتاژ منبع تغذیه برابر می شود در نیمه هادی نوع N ، نیروی دافعه بین یون های منفی و الکترونهای قطب منفی منبع تغذیه مانع نزدیک شدن این الکترونها به ناحیه تخلیه می شود و در نتیجه عرض ناحیه تخلیه در این نیمه هادی ثابت می ماند . همچنین در نیمه هادی نوع P نیز ، نیروی جاذبه بین یون های مثبت و الکترونهای اطراف ناحیه تخلیه ، مانع دور شدن این الکترونها از این نواحی می شود و در نتیجه در این نیمه هادی نیز عرض ناحیه تخلیه ثابت می ماند . 



البته توجه داشته باشید که در بایاس معکوس دیود ، جریان بسیار ضعیفی از دیود عبور می کند که جهت این جریان از طرف کاتد به طرف آند است و علت برقراری این جریان در دیود این است که در بایاس معکوس دیود ، در ناحیه تخلیه یک میدان الکتریکی قوی ایجاد می شود . تحت تأثیر این میدان و نیز انرژی حرارتی محیط ، بعضی از پیوند های کووالانسی بین یون ها و اتم ها شکسته شده و الکترونهایی آزاد می شوند . الکترونهای آزاد شده در خلاف جهت میدان حرکت کرده و خود را به قطب مثبت منبع تغذیه می رسانند . 

بعضی از این الکترونها در طول مسیر خود با حامل های اقلیت نیمه هادی نوع N یعنی حفره ها ترکیب می شوند و در اثر شکسته شدن پیوندها یی ، مجدداً همان تعداد الکترون آزاد می شود که به طرف قطب مثبت منبع تغذیه حرکت می کنند . هم زمان در نیمه هادی نوع P نیز ، حامل های اقلیت که الکترونها هستند وارد ناحیه تخلیه شده و با حفره های ایجاد شده ترکیب می شوند و همان تعداد الکترون از منبع تغذیه وارد نیمه هادی نوع P می شود و به این ترتیب جریان ضعیفی در دیود جاری می شود که به آن جریان اشباع معکوس دیود می گویند . 

بنابراین ، این حامل های اقلیت نیمه هادی ها هستند که سبب برقراری جریان اشباع معکوس در دیود می شوند . مقدار جریان اشباع معکوس دیود به درجه حرارت محیط وابسته است و پس از به اشباع رسیدن جریان معکوس دیود ، افزایش ولتاژ معکوس در مقدار آن تأثیری ندارد .

حداکثر ولتاژ معکوس در دیود ها :

حداکثر ولتاژی که در بایاس معکوس می تواند در دو سر دیود قرار گیرد بطوری که دیود آسیب نبیند ، حداکثر ولتاژ معکوس دیود نام دارد . معمولاً چهار پارامتر برای حداکثر ولتاژ معکوس قید می شود که این چهار پارامتر عبارتند از :


 ۱- حداکثر ولتاژ معکوس DC : حداکثر ولتاژ DC اعمال شده به دو سر دیود در بایاس معکوس که دیود می تواند تحمل کند را حداکثر ولتاژ معکوس DC می گویند و آن را با VR نمایش می دهند .

۲- حداکثر ولتاژ معکوس مؤثر : حداکثر ولتاژ مؤثری که به صورت معکوس می تواند در دو سر دیود قرار گیرد به طوری که دیود آسیب نبیند و آن را با (VR(rms نمایش می دهند .
۳-  ولتاژ معکوس قابل تحمل در وضعیت کار عادی : حداکثر ولتاژ معکوس قابل تحمل توسط دیود در وضعیت کار عادی را ولتاژ معکوس قابل تحمل در وضعیت کار عادی می گویند و آن را با VRWM نمایش می دهند .
۴ماکزیمم ولتاژ معکوس تکرار سیکل ها : حداکثر ولتاژ معکوسی که به صورت تکرار سیکل ها می تواند در دو سر دیود قرار بگیرد بطوری که دیود آسیب نبیند را ماکزیمم ولتاژ معکوس تکرار سیکل ها می گویند و آن را با VRRM نمایش می دهند .


پژوهشگر و نویسنده:  دکتر افشین رشید)